DataFrame.
to_spark_io
Write the DataFrame out to a Spark data source. DataFrame.spark.to_spark_io() is an alias of DataFrame.to_spark_io().
DataFrame.spark.to_spark_io()
DataFrame.to_spark_io()
Path to the data source.
Specifies the output data source format. Some common ones are:
‘delta’
‘parquet’
‘orc’
‘json’
‘csv’
‘overwrite’. Specifies the behavior of the save operation when data already.
‘append’: Append the new data to existing data.
‘overwrite’: Overwrite existing data.
‘ignore’: Silently ignore this operation if data already exists.
‘error’ or ‘errorifexists’: Throw an exception if data already exists.
Names of partitioning columns
Column names to be used in Spark to represent pandas-on-Spark’s index. The index name in pandas-on-Spark is ignored. By default, the index is always lost.
All other options passed directly into Spark’s data source.
See also
read_spark_io
DataFrame.to_delta
DataFrame.to_parquet
DataFrame.to_table
DataFrame.to_spark_io
DataFrame.spark.to_spark_io
Examples
>>> df = ps.DataFrame(dict( ... date=list(pd.date_range('2012-1-1 12:00:00', periods=3, freq='M')), ... country=['KR', 'US', 'JP'], ... code=[1, 2 ,3]), columns=['date', 'country', 'code']) >>> df date country code 0 2012-01-31 12:00:00 KR 1 1 2012-02-29 12:00:00 US 2 2 2012-03-31 12:00:00 JP 3
>>> df.to_spark_io(path='%s/to_spark_io/foo.json' % path, format='json')