pyspark.pandas.Series.idxmin#
- Series.idxmin(skipna=True)[source]#
- Return the row label of the minimum value. - If multiple values equal the minimum, the first row label with that value is returned. - Parameters
- skipnabool, default True
- Exclude NA/null values. If the entire Series is NA, the result will be NA. 
 
- Returns
- Index
- Label of the minimum value. 
 
- Raises
- ValueError
- If the Series is empty. 
 
 - See also - Series.idxmax
- Return index label of the first occurrence of maximum of values. 
 - Notes - This method is the Series version of - ndarray.argmin. This method returns the label of the minimum, while- ndarray.argminreturns the position. To get the position, use- series.values.argmin().- Examples - >>> s = ps.Series(data=[1, None, 4, 0], ... index=['A', 'B', 'C', 'D']) >>> s A 1.0 B NaN C 4.0 D 0.0 dtype: float64 - >>> s.idxmin() 'D' - If skipna is False and there is an NA value in the data, the function returns - nan.- >>> s.idxmin(skipna=False) nan - In case of multi-index, you get a tuple: - >>> index = pd.MultiIndex.from_arrays([ ... ['a', 'a', 'b', 'b'], ['c', 'd', 'e', 'f']], names=('first', 'second')) >>> s = ps.Series(data=[1, None, 4, 0], index=index) >>> s first second a c 1.0 d NaN b e 4.0 f 0.0 dtype: float64 - >>> s.idxmin() ('b', 'f') - If multiple values equal the minimum, the first row label with that value is returned. - >>> s = ps.Series([1, 100, 1, 100, 1, 100], index=[10, 3, 5, 2, 1, 8]) >>> s 10 1 3 100 5 1 2 100 1 1 8 100 dtype: int64 - >>> s.idxmin() 10