public interface IsotonicRegressionBase extends Params, HasFeaturesCol, HasLabelCol, HasPredictionCol, HasWeightCol, org.apache.spark.internal.Logging
| Modifier and Type | Method and Description | 
|---|---|
RDD<scala.Tuple3<Object,Object,Object>> | 
extractWeightedLabeledPoints(Dataset<?> dataset)
Extracts (label, feature, weight) from input dataset. 
 | 
IntParam | 
featureIndex()
Param for the index of the feature if  
featuresCol is a vector column (default: 0), no
 effect otherwise. | 
int | 
getFeatureIndex()  | 
boolean | 
getIsotonic()  | 
boolean | 
hasWeightCol()
Checks whether the input has weight column. 
 | 
BooleanParam | 
isotonic()
Param for whether the output sequence should be isotonic/increasing (true) or
 antitonic/decreasing (false). 
 | 
StructType | 
validateAndTransformSchema(StructType schema,
                          boolean fitting)
Validates and transforms input schema. 
 | 
featuresCol, getFeaturesColgetLabelCol, labelColgetPredictionCol, predictionColgetWeightCol, weightColclear, copy, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoString, uid$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializeRDD<scala.Tuple3<Object,Object,Object>> extractWeightedLabeledPoints(Dataset<?> dataset)
dataset - (undocumented)IntParam featureIndex()
featuresCol is a vector column (default: 0), no
 effect otherwise.int getFeatureIndex()
boolean getIsotonic()
boolean hasWeightCol()
BooleanParam isotonic()
StructType validateAndTransformSchema(StructType schema, boolean fitting)
schema - input schemafitting - whether this is in fitting or prediction