public class RankingEvaluator extends Evaluator implements HasPredictionCol, HasLabelCol, DefaultParamsWritable
| Constructor and Description |
|---|
RankingEvaluator() |
RankingEvaluator(String uid) |
| Modifier and Type | Method and Description |
|---|---|
RankingEvaluator |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
double |
evaluate(Dataset<?> dataset)
Evaluates model output and returns a scalar metric.
|
int |
getK() |
String |
getMetricName() |
RankingMetrics<Object> |
getMetrics(Dataset<?> dataset)
Get a RankingMetrics, which can be used to get ranking metrics
such as meanAveragePrecision, meanAveragePrecisionAtK, etc.
|
boolean |
isLargerBetter()
Indicates whether the metric returned by
evaluate should be maximized (true, default)
or minimized (false). |
IntParam |
k()
param for ranking position value used in
"meanAveragePrecisionAtK", "precisionAtK",
"ndcgAtK", "recallAtK". |
Param<String> |
labelCol()
Param for label column name.
|
static RankingEvaluator |
load(String path) |
Param<String> |
metricName()
param for metric name in evaluation (supports
"meanAveragePrecision" (default),
"meanAveragePrecisionAtK", "precisionAtK", "ndcgAtK", "recallAtK") |
Param<String> |
predictionCol()
Param for prediction column name.
|
static MLReader<T> |
read() |
RankingEvaluator |
setK(int value) |
RankingEvaluator |
setLabelCol(String value) |
RankingEvaluator |
setMetricName(String value) |
RankingEvaluator |
setPredictionCol(String value) |
String |
toString() |
String |
uid()
An immutable unique ID for the object and its derivatives.
|
getPredictionColgetLabelColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnwritesavepublic RankingEvaluator(String uid)
public RankingEvaluator()
public static RankingEvaluator load(String path)
public static MLReader<T> read()
public final Param<String> labelCol()
HasLabelCollabelCol in interface HasLabelColpublic final Param<String> predictionCol()
HasPredictionColpredictionCol in interface HasPredictionColpublic String uid()
Identifiableuid in interface Identifiablepublic final Param<String> metricName()
"meanAveragePrecision" (default),
"meanAveragePrecisionAtK", "precisionAtK", "ndcgAtK", "recallAtK")public String getMetricName()
public RankingEvaluator setMetricName(String value)
public final IntParam k()
"meanAveragePrecisionAtK", "precisionAtK",
"ndcgAtK", "recallAtK". Must be > 0. The default value is 10.public int getK()
public RankingEvaluator setK(int value)
public RankingEvaluator setPredictionCol(String value)
public RankingEvaluator setLabelCol(String value)
public double evaluate(Dataset<?> dataset)
EvaluatorisLargerBetter specifies whether larger values are better.
public RankingMetrics<Object> getMetrics(Dataset<?> dataset)
dataset - a dataset that contains labels/observations and predictions.public boolean isLargerBetter()
Evaluatorevaluate should be maximized (true, default)
or minimized (false).
A given evaluator may support multiple metrics which may be maximized or minimized.isLargerBetter in class Evaluatorpublic RankingEvaluator copy(ParamMap extra)
ParamsdefaultCopy().public String toString()
toString in interface IdentifiabletoString in class Object